International **T©R** Rectifier

DIGITAL AUDIO MOSFET

IRF6665PbF

Features

- Latest MOSFET Silicon technology
- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DS(on)} for improved efficiency
- \bullet Low Q_g for better THD and improved efficiency
- \bullet Low $\tilde{Q_{rr}}$ for better THD and lower EMI
- Low package stray inductance for reduced ringing and lower EMI
- Can deliver up to 100W per channel into 8Ω with no heatsink @
- Dual sided cooling compatible
- · Compatible with existing surface mount technologies
- RoHS compliant containing no lead or bromide
- •Lead-Free (Qualified up to 260°C Reflow)

Key Parameters							
V _{DS}	100	V					
R _{DS(on)} typ. @ V _{GS} = 10V	53	mΩ					
Q _g typ.	8.7	nC					
R _{G(int)} typ.	1.9	Ω					

Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)

					-	-			
SQ	SX	ST	SH	MQ	MX	МТ	MN		

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.

The IRF6665PbF device utilizes DirectFET[™] packaging technology. DirectFET[™] packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET[™] package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFET[™] package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	100	V
V _{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	19	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.2	А
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.4	
I _{DM}	Pulsed Drain Current ①	34	
$P_{D} @ T_{C} = 25^{\circ}C$	Maximum Power Dissipation	42	W
P _D @T _A = 25°C	Power Dissipation 3	2.2]
P _D @T _A = 70°C	Power Dissipation 3	1.4	
	Linear Derating Factor	0.017	W/°C
TJ	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient 39		58	°C/W
R _{0JA}	Junction-to-Ambient 69	12.5		
R _{0JA}	Junction-to-Ambient ⑦ ⑨	20		
R _{0JC}	Junction-to-Case ® 9		3.0	
R _{0J-PCB}	Junction-to-PCB Mounted	1.4		

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250 \mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, $I_D = 1mA$
R _{DS(on)}	Static Drain-to-Source On-Resistance		53	62	mΩ	$V_{GS} = 10V, I_{D} = 5.0A$ (4)
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 100V, V_{GS} = 0V$
				250		$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R _{G(int)}	Internal Gate Resistance		1.9	2.9	Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	6.6			S	$V_{DS} = 10V, I_{D} = 5.0A$
Q _g	Total Gate Charge		8.4	13		$V_{DS} = 50V$
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.2			$V_{GS} = 10V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		0.64		1	$I_D = 5.0A$
Q _{gd}	Gate-to-Drain Charge		2.8		nC	See Fig. 6 and 17
Q _{godr}	Gate Charge Overdrive		2.8		1	
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		3.4		1	
t _{d(on)}	Turn-On Delay Time		7.4			$V_{DD} = 50V$
t _r	Rise Time		2.8			I _D = 5.0A
t _{d(off)}	Turn-Off Delay Time		14		ns	$R_{G} = 6.0\Omega$
t _f	Fall Time		4.3			V _{GS} = 10V ④
C _{iss}	Input Capacitance		530			$V_{GS} = 0V$
C _{oss}	Output Capacitance		110		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		29		pF	f = 1.0 MHz
C _{oss}	Output Capacitance		510		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		67		1	$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		130]	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		11	mJ
I _{AR}	Avalanche Current ①	_	5.0	А

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			38		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current		_	34		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage	_		1.3	V	$T_{J} = 25^{\circ}C, I_{S} = 5.0A, V_{GS} = 0V @$
t _{rr}	Reverse Recovery Time		31		ns	$T_J = 25^{\circ}C, I_F = 5.0A, V_{DD} = 25V$
Q _{rr}	Reverse Recovery Charge		37		nC	di/dt = 100A/µs ④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 0 Starting T_J = 25°C, L = 0.89mH, R_G = 25 $\Omega,~I_{AS}$ = 5.0A.
- ③ Surface mounted on 1 in. square Cu board.
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- ⑤ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $\ensuremath{\textcircled{}^{\circ}}$ Used double sided cooling , mounting pad.
- ⑦ Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $\ensuremath{\circledast}$ T_C measured with thermal couple mounted to top (Drain) of part.
- $\circledast~R_{\theta}$ is measured at T_{J} of approximately 90°C.
- Image Based on testing done using a typical device & evaluation board at Vbus=±45V, f_{SW}=400KHz, and T_A=25°C. The delta case temperature ΔT_C is 55°C.

International IOR Rectifier 100 VGS 15V 10V TOP 9.0V b, Drain-to-Source Current (A) 8.0V 7.0V BOTTOM 6.0V 10 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 0.1 1 10 100 1000 V_{DS}, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

V_{DS}, Drain-to-Source Voltage (V) **Fig 5.** Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

IRF6665PbF

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

IRF6665PbF

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ③

International **tor** Rectifier

Fig 15a. Unclamped Inductive Test Circuit

Fig 15b. Unclamped Inductive Waveforms

Fig 16a. Switching Time Test Circuit www.irf.com

Fig 13. On-Resistance vs. Drain Current

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 16b. Switching Time Waveforms

IRF6665PbF

International **IOR** Rectifier

* V_{GS} = 5V for Logic Level Devices

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET[®] Power MOSFETs

DirectFET[™] Substrate and PCB Layout, SH Outline

(Small Size Can, H-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Outline Dimension, SH Outline

(Small Size Can, H-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

DirectFET[™] Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6665TRPBF). For 1000 parts on 7" reel, order IRF6665TR1PBF

	REEL DIMENSIONS								
S	STANDARD OPTION (QTY 4800)					1 OPTION	I (QTY 10	00)	
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMPERIAL		
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
A	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

Loaded Tape Feed Direction

DIMENSIONS							
	ME	TRIC	IMPERIAL				
CODE	MIN	MAX	MIN	MAX			
Α	7.90	8.10	0.311	0.319			
В	3.90	4.10	0.154	0.161			
С	11.90	12.30	0.469	0.484			
D	5.45	5.55	0.215	0.219			
E	4.00	4.20	0.158	0.165			
F	5.00	5.20	0.197	0.205			
G	1.50	N.C	0.059	N.C			
Н	1.50	1.60	0.059	0.063			

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/06

9

Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>